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A discrete model is presented to describe the dynamics of nematic liquid crystals for the case where
topological defects dominate the spatial pattern. A numerical study is given of the annihilation kinetics
of the defects in the two-dimensional nematic system with P? symmetry. The structure factor is found to
obey a scaling law S (k,t)=(k )2g(k /{k ),) where the first moment {k ), varies as {k ), ~1~%*2. The

asymptotic power-law tail g (x)~x ~*3 is found.

PACS number(s): 64.60.Cn, 61.30.Jf, 82.20.Mj

The phase-ordering dynamics of quenched disordered
systems has been an area of very active research for some
time [1]. A typical example is spinodal decomposition of
binary alloys and fluids. Recently, effort has been devot-
ed to the study of systems with more complicated order
parameters, such as n-component vectors and nematic
liquid crystals, [2—8]. These systems exhibit scaling laws
characterized by a few parameters such as the internal
symmetry and the dimensionality of space. This univer-
sality is due to the fact that the spatial patterns exhibited
by these systems are governed by topological defects.
Thus the study of the kinetics of defects is crucial in un-
derstanding the phase-ordering dynamics.

Liquid crystals are ideally suited for experimental
study of defect dynamics. Indeed, recent experiments
[9-11] have provided much insight on defect kinetics.
However, analytical understanding is limited to the vec-
tor order-parameter systems with O(N) symmetry. Al-
though the nematic liquid crystal differs from vector sys-
tems only in whether the order parameter has a distinc-
tion between head and tail, this makes topological singu-
larities of nematic liquid crystals somewhat complicated.
The order-parameter space is a projective plane P2
whose topological defects are characterized by the homo-
topy groups [12] 7(P2)=2Z,, m)(P*)=Z, and m;(P*)=2Z;
i.e., in two-dimensional (2D) nematic liquid crystals there
can be singly charged point defects and extended defects
(textures) with integer charge, and there are one species
of line defects, point defects with integer charge, and tex-
tures in three dimensions. In this paper, we consider the
2D system with P? symmetry.

The Frank free energy has been used to describe the
macroscopic characters of nematic liquid crystals. This
is, however, not suitable for systems including topological
defects, since the one-parameter approximation of the
Frank energy is identical to that of the classical spin sys-
tem with S? symmetry. This means that the stationary
solution of the Frank energy can involve topological de-
fects found in the spin system whose homotopy groups
are m,(S?)=0 and m,(S?)=Z, which is different from
that of the P? system.

In this paper, we construct a discrete model to describe
the growth kinetics of the P2 system. As the order pa-
rameter is nonconserved, the evolution equation is simply
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given by

OF
9,¢ 50’ (1)
where ¥ is a 3D vector field. The key point is the con-
struction of the energy F. When 9 lies on the minima of
a local potential V(|9|), the energy should be invariant
under the global SO(3) rotation of ¥ and under the local
inversion, i.e., $(r)— —¢(r). A simple model satisfying
these condition was given by Khveshchenko, Kogan, and
Nechaev [13] as
Fyyn=— X v;n;'n; , n,€S?, v, E+L. ()
ij
They considered the phase transition in two space, em-
ploying the mean-field-approximation method in lattice-
gauge theory. They treated {n;} and {v;} as indepen-
dent variables in their calculation of the partition func-
tion. However, the gauge v;; is an auxiliary field depend-
ing intrinsically on 3 because the energy should be deter-
mined solely by the configuration of the director. For
this Z, gauge, for example, we could take

v;=sgn(n; n;) . (3)

Note, however, that since the gauge is required only to
preserve the symmetry of the system, it is not restricted
to be Z, symmetric. The only constraint on v;; is simply
that it be an increasing odd function of n;'n;. We avoid
Eq. (3) because of unphysical pinned structures, appear-
ing as follows.

Let us consider the P! system for simplicity, where the
director is planar. A typical pinned structure for the
model (3) is shown in Fig. 1. The change of the nearest-
neighbor (NN) interaction associated with the rotation of
the central director n; is given by

- X yym;n;=—V2sin
JENN of i

>

LT
0+

where the plus and minus signs are taken for 0<8<7/2
and 7/2 <0 <, respectively. Thus, the energy has dou-
ble minima: one at 6= /4 corresponds to a two-defect
state, and the other at 37 /4 is a no-defect state. When
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In this

n;:n;.

(5)

way, we avoid the unphysical, pinned configurations.

ergy unchanged by rotation. A simple energy satisfying
Consequently, the free energy is written as

tical to the XY model, we choose Vij» which keeps the en-

this condition is the linear relation v;;
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director should be dynamically iden-

1

the system starts from a random configuration, there ap-

pear some pinned structures such as the former. In con-
trast, for a similar structure for the XY model, the energy

is unchanged by the rotation of the central spin. Since

the model with a P

const, the energy

NN

(o) —(r)|*1+ S V(e(n))) , yER?,
l(r, )2+ |9, )| )(r, 1)} +(1+7)P(r, 1) —7]P(r, )| *P(r,¢)

The left and right

FIG. 2. A time sequence showing the growth of directional

order and the annihilation of defects.
columns show the x-py and x-z components of directors, respec-

tively, and the dots represent defects.
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FIG. 1. A pinned configuration of a nematic model with Z,

gauge.
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regard the center of the square as a defect position. Since
the sign of £ depends on the choice of the projection
plane, the sign makes no sense topologically. Thus the
defect charge is classified into two values O and 1, and the
collision of any two defects results in the annihilation,
i.e., 1+1=0. One can see the pair-annihilation process
of defects in Fig. 2. As shown in Fig. 3, the number of
defects decreases in a power law N < %% in the late
stage 800 <t <7000, where the mean separation of de-
fects changes from 10 to approximately 30. The data for
N as well as the following structure factor were taken on
2562 lattices and averaged over ten initial conditions.
The structure factor is written as

S, (k) =(Z,(K0E,;(—k)) , (6)

Z,k)=L"'3 > /Lo (1), (7

where ®;; is the tensor order parameter defined in terms
of the components of ¥, {9;} as

@, (D)=, (0)Y;(r) =38, , (8)

and L =256. Considering the isotropy of the system, we
calculate two averaged structure factors

Sylk,t)=13 S;;(k,t) (diagonal part) , 9)

S,(k, )= 3, S;;(k,t) (off-diagonal part) . (10)
ij

i#j
Figure 4 shows the two structure factors which have been
scaled by the  first moment of (k)
=3, kS(k,t)/3cS(k,t) as  S(k,t)=(k)?g(k/{k)).
Figure 5 shows that the characteristic length increases in
a power law (k) o< t? ¢=0.42, consistent with the be-
havior of the number of defects. This exponent is some-
what less than the value ¢ =1 expected by the dimension-
al analysis. Such a lower exponent was also observed in
simulations of the vector order-parameter systems [5,14].
This fact has been determined to mean that the system

log N

2.5 N

logot

FIG. 3. The number of defects vs time (solid line). The
dashed line indicates the slope (—0.84). The data were taken
on 256 lattices and averaged over ten initial conditions.
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FIG. 4. The scaled structure factor: (a) diagonal part, (b)
off-diagonal part. The inset is a log-log plot of the large-k re-
gime which shows the power-law tail. The solid lines indicate
the slope (—4.5).

S —a— diagonal

- off-diagonal

logo<k>

0.6

log ot

FIG. 5. The first moment of structure vs time. The dotted-
dashed line indicates the slope (—0.42).
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has not reached the asymptotic regime. It is, however,
still possible that the lower exponent is a property of sys-
tems with defects.

Another significant behavior is the power-law tail
g(x)~x"* x=4.5. The exponent 4.5 is an intermediate
exponent between XY and Heisenberg systems [15]. This
fact is naively expected from the local configuration
around a defect; i.e., the dimensionality of the director is
like that of Heisenberg system and the pointlike defect is
like that of the XY system.

In summary, we have presented a discrete model for
the phase ordering of the nematic liquid crystals. By nu-
merical simulations, we found the scaling behavior of the
structure factor, which has a power-law tail with the
noninteger exponent 4.5 distinguishing the P2 nematic
liquid crystals from the O(N) vector systems. The 2D
nematic liquid crystals with P2 symmetry are, however,
hard to observe experimentally because the director is
trapped in the plane or in the vertical direction due to the

boundary effect. To compare the simulation with experi-
ment, therefore, we had to study 3D systems. Our model
can be used for this purpose, and this is now in progress.
After this paper was submitted for publication, the au-
thor received a preprint from Blundell and Bray [16],
who have performed a 3D simulation result for P? sym-
metry and a 2D simulation for P! symmetry using a simi-
lar model. The 3D simulation shows a growth exponent
¢=0.42 and a noninteger power-law tail (y=5.340.1)
consistent with the present one.
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